Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602971

RESUMO

Aggression has multiple benefits and is often coupled with other behaviors ("behavioral syndromes"). The level of aggressiveness is influenced by an adaptive benefit-cost ratio suggesting that benefits should outweigh the costs of aggression. Here, we assess if several behaviors are coupled in two behaviorally different populations (aggressive, peaceful) of the high-elevation ant Tetramorium alpestre. For three weeks, we collected colony fragments and analyzed boldness, exploring, foraging, and risk-taking behaviors. We hypothesized that the aggressive population is bolder, more explorative and risk-prone, and forages more food than the peaceful population. To test whether (a) the combination of experiments and parameters used yields a good setup, (b) populations differ behaviorally, and (c) populations display behavioral syndromes, we assessed (a) the frequency of repeatable behaviors of each experiment, (b) the behavioral means among populations, and (c) the behavioral repeatability, respectively. We found that (a) boldness and exploring were most repeatable and represent a good experimental setup, (b) the aggressive population was bolder and more explorative and risk-prone than the peaceful population, (c) boldness and exploring behaviors were highly repeatable in both populations, thus corroborating our hypothesis. The results suggest that boldness, exploring, and risk-taking but not foraging are presumably coupled with aggression and indicate the presence of behavioral syndromes in this ant. Under specific ecological conditions, aggression may be coupled with other behaviors and important for finding food. Aggression is probably adaptive in T. alpestre, possibly indicating that selection favors aggression at least partially, which may counteract the complete loss of intraspecific aggression.

2.
Behav Processes ; 208: 104872, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011703

RESUMO

Standardised assays are often used to characterise aggression in animals. In ants, such assays can be applied at several organisational levels (e.g., colony, population) and at specific times during the season. However, whether the behaviour differs at these levels and changes over a few weeks remains largely unexplored. Here, six colonies from the high-elevation ant Tetramorium alpestre were collected weekly for five weeks from two behaviourally-different populations (aggressive and peaceful in intraspecific encounters). We conducted one-on-one worker encounters at the colony and population levels. When analysing the colony combinations separately, the behaviour was peaceful and remained so within the peaceful population; initial aggression became partially peaceful within the aggressive population; and initial aggression decreased occasionally and increased in one combination but remained constant for most across-population combinations. When analysing all colony combinations together, within-population behaviour remained similar, but across-population behaviour became peaceful. The observed behavioural differences among organisational levels emphasise the relevance of assessing both levels. Moreover, the effect of decreasing aggression is discernible already over a few weeks. Compression of the vegetation period at high elevations may compress such behavioural changes. Addressing both organisational levels and seasonality is important, particularly in studies of behavioural complexity such as in this ant.


Assuntos
Formigas , Animais , Agressão
3.
Sci Total Environ ; 861: 160443, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36436655

RESUMO

Behaviour is a response of organisms to internal and external stimuli and comprises various activities such as searching for food. Aggression is important in such activities, for example, improving the chances of winning competition for food, but animals differ in their level of aggression. This behavioural plasticity allows individuals to respond to environmental changes and is important for the survival of animals. It may be an important asset in facing global changes, which affect all organisms, for example, via rising temperature and eutrophication. The latter have steadily increased since 1900, especially in high elevations. Their effects may first become visible in stationary organisms such as ants because their nests are strictly associated with the conditions on site. Here, we analysed eight populations of the high-elevation ant Tetramorium alpestre along several elevations spanning the European Alps. We conducted a correlative approach and analysed several genetic and environmental proxies, namely within- and across-colony genetic relatedness, cuticular hydrocarbons, body size, across-colony geographic distance, air temperature, and worker nitrogen values additionally to within-population aggressive behaviour. We hypothesised that a) these proxies and aggressive behaviour differ among populations and that b) one or more of these proxies influence aggression. We found that a) some environmental proxies and aggression differed among populations but not the genetic proxies and that b) air temperature and worker nitrogen-isotope values correlated positively with worker aggression. The results indicate an environmental but not social-structural influence on this ant's aggressive behaviour, even though social structure varied among populations (single- and multiple-queened colonies). We infer that global change affects aggression in our study system and propose five mutually non-exclusive scenarios to explain the behavioural change mechanistically. Using the space-for-time principle, we speculate that aggression may increase due to future increases in temperature and nitrogen availability in this ant and other species living in high elevations.


Assuntos
Formigas , Animais , Formigas/fisiologia , Nitrogênio , Temperatura , Agressão , Hidrocarbonetos
4.
Environ Toxicol Chem ; 41(5): 1215-1227, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088916

RESUMO

With their high persistence in the environment and their potential for long-range atmospheric transport, persistent, bioaccumulative, and toxic chemicals (PBTs) may be among the numerous anthropogenic threats to insect populations worldwide. The effects of PBTs on insects have been investigated in the laboratory, but topical field studies are scarce. A reason might be the multiple challenges faced by PBT-related field studies on wild insects. We studied two species of bumblebees (Bombus spp.) and of ants (Formica spp.) in two high-elevation locations in the Austrian and German Alps to tackle two of these challenges. First, PBTs occur in minuscule concentrations compared with other substances in the environment. Therefore, the practicability of body burden data from pooled individuals was tested. Second, fitness proxies like fecundity, which typically are endpoints for chemical toxicity, are difficult to quantify in the field. Hence, fluctuating asymmetry of bumblebee wings and ant heads was tested as an alternative endpoint. To exclude the possibility that fluctuating asymmetry was caused by genetic stressors, inbreeding levels were estimated using population-genetic markers, and their relationships to fluctuating asymmetry in the same individuals were assessed. We successfully quantified polychlorinated biphenyls and Hg as PBTs using the pooled samples and found PBT data from pooled individuals useful, in that significant correlations to fluctuating asymmetry were identified in bumblebees and ants. This finding confirmed the potential of fluctuating asymmetry to indicate PBT effects in wild insects. Inbreeding did not interfere with PBT links to fluctuating asymmetry in any instance. Our findings contribute to the development of a quantitative methodological framework for investigating the effects of persistent environmental chemicals on wild insects. Environ Toxicol Chem 2022;41:1215-1227. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Mercúrio , Animais , Abelhas , Bioacumulação , Ecotoxicologia , Humanos , Insetos , Mercúrio/toxicidade
5.
Mol Ecol ; 30(11): 2511-2527, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811410

RESUMO

Invasive species are a global threat to biodiversity, and understanding their history and biology is a major goal of invasion biology. Population-genetic approaches allow insights into these features, as population structure is shaped by factors such as invasion history (number, origin and age of introductions) and life-history traits (e.g., mating system, dispersal capability). We compared the relative importance of these factors by investigating two closely related ants, Tetramorium immigrans and Tetramorium tsushimae, that differ in their social structure and invasion history in North America. We used mitochondrial DNA sequences and microsatellite alleles to estimate the source and number of introduction events of the two species, and compared genetic structure among native and introduced populations. Genetic diversity of both species was strongly reduced in introduced populations, which also differed genetically from native populations. Genetic differentiation between ranges and the reduction in microsatellite diversity were more severe in the more recently introduced and supercolonial T. tsushimae. However, the loss of mitochondrial haplotype diversity was more pronounced in T. immigrans, which has single-queen colonies and was introduced earlier. Tetramorium immigrans was introduced at least twice from Western Europe to North America and once independently to South America. Its monogyny might have limited genetic diversity per introduction, but new mutations and successive introductions over a long time may have added to the gene pool in the introduced range. Polygyny in T. tsushimae probably facilitated the simultaneous introduction of several queens from a Japanese population to St. Louis, USA. In addition to identifying introduction pathways, our results reveal how social structure can influence the population-genetic consequences of founder events.


Assuntos
Variação Genética , Genética Populacional , Europa (Continente) , Espécies Introduzidas , Repetições de Microssatélites , América do Norte , América do Sul
6.
Mol Biol Evol ; 37(8): 2211-2227, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32181804

RESUMO

Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.


Assuntos
Aclimatação/genética , Formigas/genética , Evolução Biológica , Genoma de Inseto , Seleção Genética , Animais , Clima Frio , Proteínas de Choque Térmico/genética
7.
Sci Rep ; 9(1): 6856, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048736

RESUMO

Animal behaviour often is characterised by standardised assays. In social insects such as ants, behaviour assays are for example used to characterise aggressive and peaceful behaviour. Such assays differ in the number of individuals, the duration and place of assays, and the scoring scales. Also the behaviour indices used to summarise the results differ. Here, we compared five behaviour indices (Aggression Index, Mean Maximum Aggression Index; and the newly introduced Mean Maximum Peace Index, Mean Behaviour Index aggressive, and Mean Behaviour Index peaceful) using a scoring scale that comprises peaceful and aggressive behaviour. The indices were applied on eight simulations and three observed data sets. The five indices were correlated but frequently differed in their means. Multiple indices were needed to capture the complete behaviour range. Furthermore, subtle differences in workers' behaviour, that is, differences that go beyond the presence/absence of aggression, were only identified when considering multiple indices. We infer that the indices applied are differently suited for different analyses. Fine-scale analyses of behavioural variation profit from using more than one index. The particular choice of index or indices likely influences the interpretation of behaviour and should be carefully done in the light of study species and research question.


Assuntos
Comportamento Animal/fisiologia , Agressão/fisiologia , Animais , Formigas , Comportamento Social
8.
Ethol Ecol Evol ; 30(3): 220-234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682632

RESUMO

Social structure influences animal societies on various levels (e.g., relatedness, behaviour). In ants, both the number of matings per queen and the number of queens per colony can vary strongly. While workers from both monogynous and polygynous colonies often fight fiercely, in supercolonies (an extreme form of polygyny comprising thousands of queens in spatially separated but interconnected nests), non-nestmates interact peacefully. Studies on social and behavioural polymorphism within ant species can help elucidate their influence on genetic diversity and behaviour and the factors triggering variation in social structure and behaviour. Here, we reveal a behavioural and social polymorphism comprising monogyny with and without internest aggression in Tetramorium alpestre sampled in Tyrol, Austria. The social polymorphism is based on genetic and behavioural evidence and contrasts with the supercolonial organisation known from another location in Austria (Carinthia), 150 km away. Microsatellite genotyping using eight polymorphic loci revealed monogyny-monandry and high intranest pairwise relatedness. Interestingly, various experimental one-on-one worker encounters revealed only occasional aggressive behaviour between monogynous colonies, and thus a behavioural polymorphism. Mantel tests revealed a significant negative correlation between spatial distance and relatedness, while worker behaviour was not correlated with relatedness or spatial distance. These results indicate that behaviour might be influenced by other factors - for example, the experience of workers, ecological, chemical, and/or genetic factors not characterised in this study. However, workers distinguished nestmates from non-nestmates also when aggression was lacking. We hypothesise an adaptive value of reduced aggression. We speculate that the non-aggressive and partly aggressive encounters observed represent different options in the social structure of T. alpestre, the non-aggressiveness possibly also promoting supercolony development. The social and behavioural polymorphisms observed offer opportunities to identify the factors triggering these changes and thus further explore the behavioural and social polymorphism of this ant species.

9.
Ecol Evol ; 8(4): 2006-2020, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468020

RESUMO

Interspecific variation in life-history traits and physiological limits can be linked to the environmental conditions species experience, including climatic conditions. As alpine environments are particularly vulnerable under climate change, we focus on the montane-alpine fly Drosophila nigrosparsa. Here, we characterized some of its life-history traits and physiological limits and compared these with those of other drosophilids, namely Drosophila hydei, Drosophila melanogaster, and Drosophila obscura. We assayed oviposition rate, longevity, productivity, development time, larval competitiveness, starvation resistance, and heat and cold tolerance. Compared with the other species assayed, D. nigrosparsa is less fecund, relatively long-living, starvation susceptible, cold adapted, and surprisingly well heat adapted. These life-history characteristics provide insights into invertebrate adaptations to alpine conditions which may evolve under ongoing climate change.

10.
Fly (Austin) ; 12(1): 13-22, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29166845

RESUMO

Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci ("core sets") for long-time use in large-scale population screenings are compiled.


Assuntos
Drosophila/genética , Repetições de Microssatélites , Animais , Técnicas de Cultura , Drosophila/classificação , Feminino , Genética Populacional , Masculino
11.
Mol Ecol Resour ; 13(5): 966-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23937578

RESUMO

This article documents the addition of 234 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acipenser sinensis, Aleochara bilineata, Aleochara bipustulata, Barbus meridionalis, Colossoma macropomum, Delia radicum, Drosophila nigrosparsa, Fontainea picrosperma, Helianthemum cinereum, Liomys pictus, Megabalanus azoricus, Pelteobagrus vachelli, Pleuragramma antarcticum, Podarcis hispanica type 1A, Sardinella brasiliensis and Sclerotinia homoeocarpa. These loci were cross-tested on the following species: Acipenser dabryanus, Barbus balcanicus, Barbus barbus, Barbus cyclolepis, Drosophila hydei, Drosophila melanogaster, Drosophila obscura, Drosophila subobscura, Fontainea australis, Fontainea fugax, Fontainea oraria, Fontainea rostrata, Fontainea venosa, Podarcis bocagei, Podarcis carbonelli, Podarcis liolepis, Podarcis muralis and Podarcis vaucheri.


Assuntos
Repetições de Microssatélites , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...